
EXPLORATION OF THE CORE COMPONENTS OF THE NAVMESH TOOL
WITHIN UNITY.

OneDrive link to prototype:

https://livereadingac-
my.sharepoint.com/:f:/g/personal/ip821912_student_reading_ac_uk/Eph7u2ReqsxHn7TsYyxoWTYB
E43Jh_bUzEqTR51vk48QoA?e=Zbfwa3

Written by: Luke Collinson

Unit: CEM242 Advanced visualisation and interactive technologies

Assignment: Individual Project (report + prototype)

Wordcount (not including references, captions, or appendices): 1489

https://livereadingac-my.sharepoint.com/:f:/g/personal/ip821912_student_reading_ac_uk/Eph7u2ReqsxHn7TsYyxoWTYBE43Jh_bUzEqTR51vk48QoA?e=Zbfwa3
https://livereadingac-my.sharepoint.com/:f:/g/personal/ip821912_student_reading_ac_uk/Eph7u2ReqsxHn7TsYyxoWTYBE43Jh_bUzEqTR51vk48QoA?e=Zbfwa3
https://livereadingac-my.sharepoint.com/:f:/g/personal/ip821912_student_reading_ac_uk/Eph7u2ReqsxHn7TsYyxoWTYBE43Jh_bUzEqTR51vk48QoA?e=Zbfwa3

CONTENTS | P a g e

CONTENTS

AIMS/ RESEARCH QUESTIONS

1

RESEARCH ACTIVITES
- INTRO
- ACTIVITY 1 - NAVMESH SURFACES
- ACTIVITY 2 - NAVMESH AGENT
- ACTIVITY 3 - NAVMESH OBSTACLE
- ACTIVITY 4 - NAVMESH LINK

1

2-6
6-8
9-10
11-12

REFLECTION, PROTOTYPE AND FUTURE USES

13

BIBLOGRAPHY AND REFRENCES 14

1 | P a g e

Exploration of the core components of the NavMesh tool within unity.

NavMesh (short for Navigation Mesh) is a data structure which describes the walkable surfaces of
the game world and allows to find path from one walkable location to another in the game world.
(Unity Documentation, 2020)

AIMS/ RESEARCH QUESTIONS

This independent research project will look to evaluate the functionality, ease of use, and explore
the limits of the tool through the 4 core components that make up NavMesh. These being:

- NavMesh Surface – Defines a traversable surface
- NavMesh Agent – Moving AI sprite
- NavMesh Obstacle – Block portions of the traversable surface
- NavMesh Link – Allows traversing disconnected surfaces

To help tackle this issue, the independent research project has been divided into 4 activities. Each
activity will explore one of the four key components and the tools within the components,
eventually producing a prototype that showcases all four activities and some potential future uses of
the tool.

Activity 1 – NavMesh Surfaces. This task will involve setting up a traversable surface to enable the
other 3 activities. I shall be specifically looking at the NavMeshSurface component and its tools
within the component.

Activity 2 – NavMesh Agent. This task will involve creating a script that controls an agent that
navigates its own path around the NavMesh Surface following a user’s directional input.

Activity 3 – NavMesh Obstacle. This task will involve creating obstacles that aim to block the
agent’s path, these shall be both static and dynamic.

Activity 4 – NavMesh Link. This task will involve connecting 2 disconnected NavMesh surfaces
together.

The independent project activities shall be completed on unity build 2020.3.24f1 using a window
64bit PC. The NavMesh components tools used in some of the activities are not in the standard
unity install and require you to visit: https://docs.unity3d.com/Manual/NavMesh-
BuildingComponents.html to download the required assets.

REASEARCH ACTIVITIES

I have initially set up a basic testing environment consisting
of 3 objects. A ground cube (green) walls (grey) and a
cylinder/ sprite (white) this environment will be our
starting point to explore the NavMesh tool and its
capabilities. Refer to fig 1.

Figure 1 - test environment

https://docs.unity3d.com/Manual/NavMesh-BuildingComponents.html
https://docs.unity3d.com/Manual/NavMesh-BuildingComponents.html

2 | P a g e

Activity 1 – NavMesh Surfaces.

I have created an empty under the hierarchy tab and renamed it NavMesh and applied the
component ‘NavMeshSurface’. Upon clicking bake unity detects surfaces and applies a traversable
area. The traversable area showcased in a tinted blue area. Note, only the top plane of our surfaces
has had a NavMesh applied. Refer to fig 2.

The component ‘NavMeshSurface’ itself has a wide range of customisable features, within this
section we shall investigate a few of these further whilst developing our final prototype to
demonstrate the features of these tool.

The NavMeshSurface component also works on externally imported models, refer to figure 3. Here
you can clearly see what is detected as walkable space with the light blue tint but some areas,
possibly due to level changes within the model have been miss detected.

Figure 2 – Test environment

Figure 3 - Applying NavMeshSurface component to an externally imported model

3 | P a g e

Through changing the voxel size, we can create a more defined ground, but with the lack of accuracy
you lose the recognition of the internal spaces. Refer to fig 4.

The NavMesh Surface component also handles custom painted terrain. Interesting due to only the
top surfaces of objects becoming traversable spheres are limited. Refer to fig 5.

Figure 5 - exploring different shapes with NavMesh

4 | P a g e

The cylinder shall become our agent but first we need to make sure that the NavMesh ignores the
cylinder when rendering the traversable area, so we need to put the cylinder on to new layer. Refer
to fig 6.

Once the cylinder has been placed onto the player layer you can manage what layers are detected by
the NavMesh using the NavMeshSurface component. Under ‘include layers’ once the newly created
player layer has been unticked and upon re-baking, the NavMesh no longer detects the cylinder. This
tool under NavMeshSurface allows us to control which parts of our created environment we want
to bake. Refer to fig 7.

Figure 6 - assigning the cylinder its own layer

Figure 7- unticking the player layer and re-baking makes sure the NavMesh bakes the complete ground floor

5 | P a g e

Within the NavMeshSurface component we can also control how agents and NavMeshes interact.
We can change these settings under the agent type drop box and opening the agent settings, this
settings tab can also be found at that top right under navigation. Refer to fig 8.

Currently the default settings for the agent are set to human, within the settings we can change the
current parameters and created new agents, I have created a giant agent. Refer to fig 9.

Returning to the inspector tab for the NavMesh we can change our agent to our newly created giant
and upon re-baking the NavMesh you can see that the newly traversable area has been baked for the
giant agent. Refer to fig 10.

Figure 9 - custom agent created

6 | P a g e

Activity 2 – NavMesh Agent.

The NavMesh agent is agent that can navigate around the mesh. To explore this component first we
must click on our agent (cylinder) and add the component ‘NavMesh Agent’. Within NavMesh agent
your able to change parameters that will affect the character. Refer to fig 11.

Firstly, before we start editing the parameters of our agent, we need them to move. Moving agents
around on a NavMesh is easy. The basis of the script shall revolve around SetDestination(); this will

Figure 10 - baked NavMesh for custom agent

Figure 11 - NavMesh Agent added to the cylinder

7 | P a g e

allow us to assign a position our agent shall move to. To add the script, I add component and click
new script. The code below takes the point you left mouse click and tells the agent to move there.
For code refer to Fig 12.

Upon saving the code and reopening unity the script shall update and create two new boxes under
the script. One for the camera (used for the user input) and agent (moveable sprite). Refer to fig 13.

Upon loading the game, the script works and moves the agents to the location the user left clicks. A
short illustration is shown below refer to fig 14.

Figure 12- code for controlling agent movement

Figure 13 - added camera and agent into script

8 | P a g e

Upon duplicating our set up agent can start to explore potential crowd simulations and see how
agents react with other agents, in our build environment, a common issue is noticed was that they
tended to get stuck upon tight corners. Refer to fig 15.

Figure 15- in game illustration of movement

Figure 14 - Multiple agents added

9 | P a g e

Activity 3 – NavMesh Obstacle.

The NavMesh Obstacle component allows you to describe moving obstacles that Nav Mesh
Agents should avoid while navigating the world. (Unity Documentation, 2020) Here I have set up 3
addition cubes (identified in red) and applied the NavMesh Obstacle component to them. Ref to fig
16.

Upon running the prototype, the agent recognises the newly created cubes as obstacles and actively avoids
them, cleverly pathing around them. Refer to fig 17.

To push this further I used a small script that moves the red obstacles to the left and right out of interest to
see if the agent could actively adjust its movements. Refer to fig 18

Figure 16 - addition ground and walls created

Figure 17 - agent actively avoiding and recalculating pathing to dynamic walls

10 | P a g e

Interesting the agent actively on the fly reacted to the moving walls and readjusted its path to always find the
shortest route.

Figure 18 - running prototype, agent pathing adjusting

11 | P a g e

Activity 4 – NavMesh Link.

NavMesh Link creates a navigable link between two locations that use NavMeshes. (Unity
documentation, 2020) In the image below I have set up an addition ground with a separated
NavMesh, currently the agent can’t get to the other ground. Refer to fig 19.

To allow the agent to travers between NavMeshes we must use the NavMeshLink component, I
have created and empty call ‘link’ and added the NavMeshLink component. An on-screen indication
appears in the form of an arching arrow. Refer to fig 20.

Figure 19 - addition ground added with NavMeshSurface applied

Figure 20 - NavMesh Link applied and an on-screen indication appears

12 | P a g e

Upon running the prototype our agent will approach the link and traverse over the link to the other
NavMesh. Refer to fig 21. Also, within the prototype you will notice the agent speeds up when
traversing the link this is to mimic a jumping motion.

The NavMeshLink component allows a wide range of customisability from controlling what agents
are allowed to cross to the widths of the crossing point and if the crossing is one directional. Refer
to fig 2.

Figure 22 - widened link area and made the direction on direction

Figure 21 - in game traversing NavMeshes

13 | P a g e

REFLECTION, PROTOTYPE AND FUTURE USES.

The NavMesh is an extremely useful and easy to use tool that allows for users to create traversable
areas very quickly, using either the built-in unity tools or external models.

The 4 key components add a verity of tools and customisations to create endless worlds. All 4
components were easy, intuitive, and offered an element of play with the customisation they offered.

NavMesh works well on flat surfaces but can struggle on external imported models and on textured
bumpy surfaces.

Some potential use cases for the tool could be for small or large crowd simulation through creating
multiple agents that travers to a set location. The attached prototype investigates this at a smaller
scale using the created world from the detailed activities. Set waypoints or objects could also be
applied to the agents.

Figure 23 - Prototype crowd simulation

14 | P a g e

BIBLOGRAPHY

Unity documentation, 2020. Unity - Manual: Navigation System in Unity. [online] Docs.unity3d.com.
Available at: <https://docs.unity3d.com/Manual/nav-NavigationSystem.html> [Accessed 4 December
2021].

Unity documentation, 2020. Unity - Manual: Nav Mesh Obstacle. [online] Docs.unity3d.com. Available
at: <https://docs.unity3d.com/Manual/class-NavMeshObstacle.html> [Accessed 15 December 2021].

REFRENCES

Unity User Manual 2020.3 (LTS) (https://docs.unity3d.com/Manual/index.html)

NavMesh Baking by Unity Technologies (https://learn.unity.com/tutorial/navmesh-baking)

Working with NavMesh Agents by Unity Technologies (https://learn.unity.com/tutorial/working-with-
navmesh-agents)

How to use Unity NavMesh Pathfinding! (Unity Tutorial) by code monkey
(https://youtu.be/atCOd4o7tG4)

Unity AI (NavMesh) Part 01 by UIW 3D Animation and Game Design (https://youtu.be/v1wVHfwvg-
g)

Unity AI (NavMesh) Part 02 by UIW 3D Animation and Game Design
(https://youtu.be/rbVf3I2BV6Y)

	AIMS/ RESEARCH QUESTIONS
	REASEARCH ACTIVITIES
	Activity 1 – NavMesh Surfaces.

