
Assignment 2

Simulating colour blindness using virtual environments

Alexander Bennett

CEM242 Autumn 2018

Advanced Visualisation and Interactive Technologies

alexander.f.bennett@reading.ac.uk

ABSTRACT

A colour blindness simulator is developed within a virtual

environment using Unity 3D. The simulator demonstrates in

real time how building users may be affected by different

types of colour blindness, allowing designers to improve

building accessibility by using different materials, colours

or textures to accommodate visually impaired people.

INTRODUCTION

Designers must be sensitive to a wide range of accessibility

issues in order to accommodate different building users.

This is particularly important within the current scope of

UK legislation, such as the Equality Act 2010 [1, 2].

Significant resources are often dedicated to improving

accessibility for physical impairment, such as mobility

issues, but visual impairment is more difficult to understand

and assess.

One such visual impairment is colour blindness, an X-

chromosome linked genetic abnormality which affects a

disproportionate number of men and a sizeable portion of

the general population. It is estimated anywhere from 5-

10% of men have a mild to severe form of protanopia or

deuteranopia (commonly known as red-green colour

blindness). A few rarer forms (tritanopia, known as blue-

yellow colour blindness, and achromatopsia, or ‘black and

white’ vision) affect <1% of the population, equally

distributed between men and women [3, 4].

Historically, colour blindness has received attention from

sectors such as graphic design or cartography, which may

incorporate measures to improve readability (e.g. by

avoiding colour-coded information, using corresponding

symbols/text or selecting ‘colour safe’ pairs).

To an extent, these measures are reflected in the built

environment [5]. Rail signalling, for example, typically uses

safer colour pairs like red, yellow and blue-green (as

opposed to the red, amber, green combination common on

highways). However, awareness of the different types of

colour blindness is not widespread and there is limited

understanding of how to improve the built environment in

this regard. Tube maps, for example, still largely rely on

colour-coding [6], while emergency signage in red and

green can be problematic [7, 8].

Beyond well-recognised issues, such as red-green clashes,

colour blindness can also present unanticipated issues

which may be virtually impossible to pick up during the

design stage. While unusual, these issues are nuanced and

highly situational – consider, for example, a flush panel

cladding system which highlights doors in a different

colour. In this case, it is unlikely that the lack of contrast for

colour blind people would ever be observed by non-visually

impaired designers without some method for universally

checking colours in the design. The degree of difference

may even vary significantly between different types of

colour blindness.

Virtual environments (VE) offer an ideal platform for

improved understanding of colour blindness and the impact

it can have on building users. Building Information

Modelling (BIM) is growing in popularity; increasingly,

designers are producing 3D models during the design phase

which can be adapted for a range of visualisation purposes.

There is also a natural synergy with VE, as the visualisation

of simulated colour blindness provides immediate feedback

to non-visually impaired people, which does not require

special expertise to interpret.

By simulating colour blindness real time in VE, designers

can intuitively grasp the issues without reference to tables

of colour-safe pairs or spectrum charts of shifted hues [9].

These tools are valuable in theory, but often clunky and

impractical in application. Similarly, various web tools exist

which allow for processing static images to simulate colour

blindness, but these are extremely limited by speed,

adaptability and integration with a typical BIM workflow.

PROJECT AIMS

The key project aim is to accurately simulate colour

blindness in a real-time VE, providing a practical utility for

designers to check colours during the design phase. In this

scenario, a designer requires a method to assess potential

issues with building accessibility for visually impaired users

in order to make better decisions on the use of materials,

colours, textures etc.

It is envisaged that interactivity with the VE may be

scripted, to allow the user to switch from a normal full

colour mode to the different simulated colour blindness

modes. Changes to the camera are preferred to directly

manipulating objects in the environment (e.g. by changing

their material/texture attributes), as the higher level change

is more applicable to a wide range of models and use

scenarios. It is important to be able to quickly and easily

switch between different modes in order to make

comparisons, ideally with no other noticeable differences to

the VE.

Ultimately, the project aims to raise awareness of these

issues, supporting so-called universal design [10].

PROJECT DESIGN

Unity 3D (version 2018.3.3f1) was selected as a convenient

platform for simulating colour blindness in VE. Unity is a

widely used game engine, with an active community of

developers. It includes the ability to import models from

commonly used design software, such as Revit or Sketchup.

There is also the ability to use scripts written in C#, which

allows for a range of unconventional modifications. Finally,

Unity can package projects in a standalone executable

(.exe) format, which means the demo project can be

circulated and tested without any specialist software.

While it is impossible to see through another’s eyes, colour

blindness ultimately arises from a physiological anomaly in

the retina. The Meyer-Greenberg-Wolfmaier-Wickline

(MGWW) [11, 12] algorithm was used to simulate colour

values for different types of colour blindness with a

reasonable degree of accuracy [13]. This benchmark

algorithm attempts to render colours based on the differing

arrays of photosensitive cells in visually impaired people.

DEVELOPMENT STEPS (DEMONSTRATION PROJECT)

A thorough study of existing research and tools for

visualising colour blindness was conducted. Several

websites with reprocessing tools, limited to static images,

were found [14, 15, 16]. Some of the Ishihara test plates

[17] found at this stage were incorporated into the final

build, along with a labelled colour wheel. The plate number

‘12’ is used as a control, as it should be equally visible to

colour blind people.

Most of the tools found focus on web/game design.

Exploring these options led to discovery of the colour

blindness filter script by Alan Zucconi [18], which was

ultimately used in every version of the project (see

Appendix B). Critically, this C# script was fully compatible

with Unity, using a custom shader to alter RGB values in

line with the MGWW algorithm [12].

Version 1.0 (see Figure 1 in Appendix A) used VREX

[19], an open-source Unity toolbox specifically designed

for researchers with limited coding abilities to quickly set

up experiments. There were significant compatibility issues

with the latest version of Unity, requiring Unity 5.4.1f1 to

run stably. Unfortunately, while this autogenerated a VE

with furnished rooms as a suitable testing model, it was not

possible to use custom scripts, such as the colour blindness

filter, and was abandoned as a result.

Version 1.1 (see Figure 2) introduced a Revit model,

imported to Unity as a .fbx file from a live design project. It

was intended that the colours and textures would carry over

(see Figure 3), again creating a useful prefabricated testing

environment. The colour blindness script was also attached

to the main camera, and worked well (see Figure 4).

Unfortunately, it proved difficult to import the textures

correctly, even when using 3ds Max as an intermediary, and

there were too many individual components to apply them

manually in Unity. Worse, the simulation had to be stopped

in order to switch colour blindness modes using the menu

(see Figure 5). This made it difficult to make real-time

comparisons, one of the fundamental project aims.

Version 1.2 introduced a simple maze model, created in

Sketchup and exported to Unity as a .fbx file (see Figure

6). This was much simpler to change materials and was

intended to provide a good test bed for showing difficulties

in navigating environments using coloured arrows. The

virtual reality (VR) component was also introduced

following testing in the university’s visual laboratory. The

SteamVR toolkit was used with the HTC Vive, and the

filter was now attached to the VR camera (see Figure 7).

Numerous issues required the project to be partially

redesigned at this stage. Initially, it was very difficult to

implement VR movement, even using the prefabricated

components, as there were clashes between the model floor

and the invisible VR plane. It was also impossible to

achieve a true-to-life appearance inside the maze, as the

lighting penetrated the model seams. This could be

mitigated by altering the shadow settings, but still resulted

in a strange appearance which reduced the simulation

fidelity. Finally, it was difficult to create coloured arrows in

the model, whether as additional objects or by modifying

the materials/textures, and the simulation still had to be

stopped to change the camera mode.

Version 1.3 was the last major revision leading to the final

build, and several minor changes were made at this stage.

Firstly, the VR component was removed and the camera

type/user controls were reverted to the first person prefab

included in the Unity Standard Assets pack. This was

largely due to the difficulty in testing the VE without access

to the university’s VR equipment, as the simulation would

not show changes to the camera without the headset. The

second key script was also introduced, allowing the camera

to be changed with a key press. This used an array which

referenced several duplicate cameras, each running its own

colour blind script and each set to a different colour

blindness mode (see Figure 8). This was an elegant

solution, allowing the camera mode to be changed

seamlessly without stopping the simulation.

Unfortunately, the camera array also created several issues.

Firstly, altering any of the duplicate cameras’ position or

rotation without selecting the parent object effectively

broke the mouse and keyboard controls. It was not clear

what was causing the issue, and this took many attempts to

resolve. Secondly, the normal vision camera was able to

rotate freely on the X and Y axes, mapped 1:1 to the mouse

movement as expected. However, the duplicate cameras

(with identical settings) were restricted to the X axis,

causing a significant mapping failure when changing modes

in real time. It is still unclear why this would occur, but the

normal camera was restricted to the X axis as a workaround

(see Figure 9).

To complete the demonstration, the maze model was

replaced with a professionally textured model of a gallery

[20], complete with custom images to provide instructions

and to highlight some examples of colour blindness

affecting user perception (see Figure 10). A custom skybox

was also added to improve the simulation fidelity and to

provide a control for the colour blindness modes.

Finally, there was a significant issue which prevented the

colour blindness filter from working at all in the final build

.exe. By interrogating the hidden Unity player debug log, a

Null Reference Exception error was found and traced back

to the custom shader which manipulates the RGB values. In

the end, it was discovered that this shader was omitted from

the build package due to a bug in Unity, which means that

custom shaders are not included in the packaged file unless

explicitly named in the project settings (see Figure 11). It is

notable that this bug occurred even though there were no

compiler errors with the scripts or any other issues evident

within the Unity project files, thus demonstrating that

inexplicable issues can arise which require a level of

coding/IT familiarity beyond most design practices.

PROJECT LIMITATIONS

Significant limitations were introduced by the selected

tools. Initially, the biggest constraint to developing the tool

in VR and exploring different solutions was the need for

specialist equipment, such as the HTC Vive setup and the

powerful graphics processing computer only available in

the university’s visual laboratory. That said, although the

cost of this equipment is currently significant on a

consumer/end user scale, there is potentially much more

value for money to a professional design practice. In the

end, the decision was made to present the final project

demonstration without the VR component, instead using a

more conventional first person camera rig commonly found

in video games.

The option remains to reinsert the VR toolkit, enabling the

full VE experience if required, though it is notably difficult

to develop simulations for VR without immediate use of

specialist VR equipment. In practice, while the non-VR

project is less immersive and convincing at simulating

colour blindness, most of the benefits to designers are

present in the basic project design, partially overcoming

this limitation. Interestingly, there are also potential

accessibility issues in restricting the simulation to VR use,

as existing equipment can be bulky and difficult for some

people to use (particularly visually impaired people!) [21].

The next most significant limitation was the requirement to

use highly sophisticated and specialised software (in this

case Unity, as well as 3ds Max and Sketchup for tweaking

models), along with an element of coding in C#. Numerous

issues arose relating to the correspondence between the

location of the camera and the user model, the fluid

switching between colour blind and full colour modes

(which was critical to the project aims), and the user

controls. Particularly frustrating was the inability to freely

rotate the camera on the Y-axis on the duplicate camera

objects used for colour blind modes. Various attempts to

free up the movement of the camera failed, and the reason

for this lack of functionality is still unclear. In the end, the

decision was made to lock the normal full colour camera to

X-axis only, which ensured it always matched the other

cameras 1:1. The negative consequence of this limitation is

particularly evident when attempting to descend the stairs in

the demonstration, as there is a natural (in this case,

unnecessary) instinct to look down at the steps; the inability

to do so reduces the environment fidelity.

While these issues are not insurmountable, they certainly

represent a barrier to entry. Design practices may have BIM

technicians, but they are currently unlikely to have the

requisite computer skills in-house to resolve complex

software/coding issues. In this instance, the final packaged

.exe at least allows for widespread distribution and use of

the project demonstration without the need for any

specialist software or coding ability. However, designers

would still need to become familiar with Unity in order to

test their own models in the simulated colour blind VE.

There are also some more practical limitations relating to

use scenarios. Critically, the project relies on existing use of

BIM during the design process; the benefits of simulating

colour blindness in VE do not by themselves merit the

additional resource investment in BIM. Currently, this may

prove onerous for small practices, or simply not cost-

effective for larger practices on low value design projects.

Nevertheless, it is anticipated that the uptake of BIM will

continue to increase as the technology and associated skills

become more widely available. In turn, this project should

offer increased relevance to the typical design scenario.

OPPORTUNITIES FOR FUTURE RESEARCH

Opportunities can be divided into two distinct groups:

practical applications/extensions to the research project and

improvements to the simulation VE.

In terms of practical applications, it would be useful to test

an actual BIM workflow to assess the usefulness of the tool

in a typical design process. An early version of the project

demonstration included an imported Revit model from a

live design project, but it proved difficult and time-

intensive to correctly import textures to Unity. This early

test was abandoned, as improvements to workflow were

needed to test a complex live model (as opposed to the

relatively simple demonstration model).

At the outset, when defining project aims, it was also

envisaged that the simulation could be extended to other

forms of visual impairment, such as partial blindness,

cataracts etc. [22] This could be a fruitful area for further

research, particularly as certain types of colour blindness

such as achromatopsia are often associated with partial

blindness. In these cases, the luminosity and contrast

between different colours would have an equal bearing on

accessibility [23, 24]. For example, red and green can be

indistinguishable to a protanope, but also completely

lacking in contrast to a partially sighted person suffering

from achromatopsia.

In terms of improvements to the simulation VE, a few key

areas would enhance functionality, practicality and

simulation fidelity.

Firstly, it would be useful to build a Graphical User

Interface (GUI). This could include a ‘pause menu’,

offering a more elegant way to close the application or

tweak graphical settings. Equally, the GUI may include a

readout indicating which colour mode the simulation is

running in (normal, deuteranopia, protanopia, tritanopia or

achromatopsia); this functionality is available in the Unity

editor via the live debug console (see Figure 12), but is

significantly more complicated to build into the Unity

player (text must be rendered to match the camera position).

Secondly, it would be more useful to designers if external

models could be selected within the Unity player to test,

without the need to modify the scene within the Unity

editor. This would almost certainly require a vastly more

complex solution to implement, perhaps beyond the

capabilities of the Unity platform. At the same time, this

would provide a useful standalone tool, particularly where

design practices have limited IT resources or for non-expert

users, such as the end client/project stakeholders.

Thirdly, some improvements to the VE interactivity would

improve its fidelity. For example, the vertical camera

movement bug could be fixed to allow more natural

exploration of the VE. Similarly, it may be useful to cycle

camera modes forwards or backwards, or to link each mode

to a specific key input (e.g. 1, 2, 3, 4) to compare between

specific types of colour blindness. This was not possible

within the constraints of the camera changing script, which

used an array to switch cameras based on an incremental

key press; alterations to this logic require other ‘main’

cameras to be disabled when a live camera is selected.

Unfortunately, these items proved difficult to implement,

and will likely require sophisticated coding skills to

improve the basic demonstration project.

CONCLUSION

Ultimately, the key project aims were achieved, noting the

limitations and future opportunities covered previously.

Critically, an accurate simulation for different types of

colour blindness using VE was possible within the

demonstration project. Moreover, there is clear practical

application for designers, as the real-time graphical

representation of colour blindness can be used to quickly

and easily test any 3D model for appropriate colour design

(given some basic familiarity with the Unity editor).

The ability to preview models in this way represents a

significant improvement on traditional methods, such as the

information tables used by graphic designers or the online

image reprocessing tools. There is an overwhelming natural

synergy between visualisation technologies, such as the

Unity VE, and the simulation of visual impairment. In

contrast, more traditional methods may lack a visual

component altogether or may provide a visual aid – but

within an impractically slow workflow.

Even without full use of specialist VR equipment to

simulate colour blindness, the basic first person model

presented in the final project demonstration shows potential

to benefit designers in considering accessibility for a wide

range of building users. This is a good example of how the

construction industry can adopt technologies from other

industries, such as IT/video game design, in order to

innovate and improve existing methods.

APPENDIX A (FIGURES)

Figure 1 (Project v1.0, VREX procedurally generated rooms)

Figure 2 (Project v1.1, imported Revit model)

Figure 3 (Original Revit Model)

Figure 4 (Project v1.1, working prototype of colour blindness filter)

Figure 5 (Project v1.1, colour blindness filter menu)

Figure 6 (Sketchup Model)

Figure 7 (Project v1.2, SteamVR camera with filter)

Figure 8 (Project v1.3, camera array with filters)

Figure 9 (Project v1.3, restricting camera movement)

Figure 10 (Project v1.3, finished build setup)

Figure 11 (Project v1.3, Build Settings error)

Figure 12 (Debug Console)

APPENDIX B (SCRIPTS)

Colour Blindness Filter, script written by Alan Zuconni [18].

// Alan Zucconi
// www.alanzucconi.com
using UnityEngine;

public enum ColorBlindMode
{
 Normal = 0,
 Protanopia = 1,
 Protanomaly = 2,
 Deuteranopia = 3,
 Deuteranomaly = 4,
 Tritanopia = 5,
 Tritanomaly = 6,
 Achromatopsia = 7,
 Achromatomaly = 8,
}

[ExecuteInEditMode]
public class ColorBlindFilter : MonoBehaviour
{
 public ColorBlindMode mode = ColorBlindMode.Normal;
 private ColorBlindMode previousMode = ColorBlindMode.Normal;

 public bool showDifference = false;

 private Material material;

 private static Color[,] RGB =
 {
 { new Color(1f,0f,0f), new Color(0f,1f,0f), new Color(0f,0f,1f) }, // Normal
 { new Color(.56667f, .43333f, 0f), new Color(.55833f, .44167f, 0f), new Color(0f,
.24167f, .75833f) }, // Protanopia
 { new Color(.81667f, .18333f, 0f), new Color(.33333f, .66667f, 0f), new Color(0f, .125f,
.875f) }, // Protanomaly
 { new Color(.625f, .375f, 0f), new Color(.70f, .30f, 0f), new Color(0f, .30f, .70f) },
// Deuteranopia
 { new Color(.80f, .20f, 0f), new Color(.25833f, .74167f, 0), new Color(0f, .14167f,
.85833f) }, // Deuteranomaly
 { new Color(.95f, .05f, 0), new Color(0f, .43333f, .56667f), new Color(0f, .475f, .525f)
}, // Tritanopia
 { new Color(.96667f, .03333f, 0), new Color(0f, .73333f, .26667f), new Color(0f, .18333f,
.81667f) }, // Tritanomaly
 { new Color(.299f, .587f, .114f), new Color(.299f, .587f, .114f), new Color(.299f, .587f,
.114f) }, // Achromatopsia
 { new Color(.618f, .32f, .062f), new Color(.163f, .775f, .062f), new Color(.163f, .320f,
.516f) } // Achromatomaly
 };

 void Awake()
 {
 material = new Material(Shader.Find("Hidden/ChannelMixer"));
 material.SetColor("_R", RGB[0, 0]);
 material.SetColor("_G", RGB[0, 1]);
 material.SetColor("_B", RGB[0, 2]);
 }

 void OnRenderImage(RenderTexture source, RenderTexture destination)

 {
 // No effect
 if (mode == ColorBlindMode.Normal)
 {
 Graphics.Blit(source, destination);
 return;
 }

 // Change effect
 if (mode != previousMode)
 {
 material.SetColor("_R", RGB[(int)mode, 0]);
 material.SetColor("_G", RGB[(int)mode, 1]);
 material.SetColor("_B", RGB[(int)mode, 2]);
 previousMode = mode;
 }

 // Apply effect
 Graphics.Blit(source, destination, material, showDifference ? 1 : 0);
 }
}

Camera Controller, script written by ‘TheArtist’ [25].

using UnityEngine;
using System.Collections;

public class CameraController : MonoBehaviour {
 public Camera[] cameras;
 private int currentCameraIndex;

 // Use this for initialization
 void Start () {
 currentCameraIndex = 0;

 //Turn all cameras off, except the first default one
 for (int i=1; i<cameras.Length; i++)
 {
 cameras[i].gameObject.SetActive(false);
 }

 //If any cameras were added to the controller, enable the first one
 if (cameras.Length>0)
 {
 cameras [0].gameObject.SetActive (true);
 Debug.Log ("Camera with name: " + cameras [0].GetComponent<Camera>().name + ", is
now enabled");
 }
 }

 // Update is called once per frame
 void Update () {
 //If the c button is pressed, switch to the next camera
 //Set the camera at the current index to inactive, and set the next one in the array to
active
 //When we reach the end of the camera array, move back to the beginning or the array.
 if (Input.GetKeyDown(KeyCode.C))
 {
 currentCameraIndex ++;
 Debug.Log ("C button has been pressed. Switching to the next camera");
 if (currentCameraIndex < cameras.Length)
 {
 cameras[currentCameraIndex-1].gameObject.SetActive(false);
 cameras[currentCameraIndex].gameObject.SetActive(true);
 Debug.Log ("Camera with name: " + cameras
[currentCameraIndex].GetComponent<Camera>().name + ", is now enabled");
 }
 else
 {
 cameras[currentCameraIndex-1].gameObject.SetActive(false);
 currentCameraIndex = 0;
 cameras[currentCameraIndex].gameObject.SetActive(true);
 Debug.Log ("Camera with name: " + cameras
[currentCameraIndex].GetComponent<Camera>().name + ", is now enabled");
 }
 }
 }
 }

REFERENCES

1. Colour Blind Awareness: Living with Colour Vision Deficiency. Available at

http://www.colourblindawareness.org/colour-blindness/living-with-colour-vision-deficiency/

2. CPD 6 2018. Colour-considered Design for the Visually Impaired. Available at

https://www.bdonline.co.uk/cpd/cpd-6-2018-colour-considered-design-for-the-visually-impaired/5093226.article

3. National Eye Institute: Facts About Color Blindness. Available at

https://nei.nih.gov/health/color_blindness/facts_about

4. Royal National Institute of Blind People: Colour Vision Deficiency. Available at

https://www.rnib.org.uk/nb-online/colour-vision-deficiency

5. Koch, E. (2015), Color and Contrast in the Built Environment. Available at

https://www.bdcnetwork.com/color-and-contrast-built-environment

6. Fickett, M. (2015), Color Universal Design and Architecture. Available at

https://www.payette.com/cool-stuff/color-universal-design-and-architecture/

7. Tang, C-H., Wu, W-T. and Lin, C-Y. (2009), Using virtual reality to determine how emergency signs facilitate way-

finding. Applied Ergonomics 40, 722-730.

8. Krösl, K., Bauer, D., Schwärzler, M., Fuchs, H., Suter, G. and Wimmer, M. (2018), A VR-based user study on the

effects of vision impairments on recognition distances of escape-route signs. The Visual Computer 34, 911-923.

9. Coloring for Colorblindness. Available at

https://davidmathlogic.com/colorblind/#%23D81B60-%231E88E5-%23FF0000-%23004D40

10. Ahmer, C. (2014), Making Architecture Visible to the Visually Impaired.

11. Meyer, G. W. and Greenberg, D. P. (1988), Color-Defective Vision.

12. Wickline Color Laboratory. Available at

http://web.archive.org/web/20081216005758/http://colorlab.wickline.org/colorblind/colorlab/

13. Color Blindness Simulation: Color Matrix. Available at

https://web.archive.org/web/20081014161121/http://www.colorjack.com/labs/colormatrix/

14. Coblis: Color Blindness Simulator. Available at

https://www.color-blindness.com/coblis-color-blindness-simulator/

15. Color-Blindness Simulators. Available at

https://lpetrich.org/Science/ColorBlindnessSim/ColorBlindnessSim.html

16. WebAIM: Color Contrast Checker. Available at

https://webaim.org/resources/contrastchecker/

17. Colormax: Color Blind Test. Available at

https://colormax.org/color-blind-test/

18. Alan Zucconi: Accessibility Design, Color Blindness. Available at

https://www.alanzucconi.com/2015/12/16/color-blindness/

19. Vasser, M., Kängsepp, M., Magomedkerimov, M., Kilvits, K., Stafinjak, V., Kivisik, T., Vicente, R., & Aru, J. (2017),

VREX: an open-source toolbox for creating 3D virtual reality experiments. BMC Psychology 5, 4.

20. Lubecki, M. (2018), VR Staircase Art Gallery 2018: 3D model. Available at

https://skfb.ly/6GUMS

21. Hamilton, I. (2018), A practitioner reflection on accessibility in virtual reality environments. The Computer Games

Journal 7,2, 63-74.

22. Stewart, G. W. and McCrindle, R. J. (2017), Visual impairment simulator for auditing and design. Journal of Alternative

Medicine Research 9, 4, 419-430.

23. Bright, K. and Egger, V. (2008), Using visual contrast for effective, inclusive, environments. Information Design

Journal 16,3, 178-189.

24. Bright, K. (2014), Making the built environment and public transport more user-friendly for visually-impaired people.

University of Reading. Impact Case Study (REF3b).

25. Camera Controller script. Available at

https://answers.unity.com/questions/16146/changing-between-cameras.html

http://www.colourblindawareness.org/colour-blindness/living-with-colour-vision-deficiency/
https://www.bdonline.co.uk/cpd/cpd-6-2018-colour-considered-design-for-the-visually-impaired/5093226.article
https://nei.nih.gov/health/color_blindness/facts_about
https://www.rnib.org.uk/nb-online/colour-vision-deficiency
https://www.bdcnetwork.com/color-and-contrast-built-environment
https://www.payette.com/cool-stuff/color-universal-design-and-architecture/
https://davidmathlogic.com/colorblind/#%23D81B60-%231E88E5-%23FF0000-%23004D40
http://web.archive.org/web/20081216005758/http:/colorlab.wickline.org/colorblind/colorlab/
https://web.archive.org/web/20081014161121/http:/www.colorjack.com/labs/colormatrix/
https://www.color-blindness.com/coblis-color-blindness-simulator/
https://lpetrich.org/Science/ColorBlindnessSim/ColorBlindnessSim.html
https://webaim.org/resources/contrastchecker/
https://colormax.org/color-blind-test/
https://www.alanzucconi.com/2015/12/16/color-blindness/
https://skfb.ly/6GUMS
https://answers.unity.com/questions/16146/changing-between-cameras.html

